PROPOSED CURRICULUM FOR A MASTER OF SCIENCE
DEGREE IN COST ENGINEERING
TCM Framework: General Reference

INTRODUCTION

This educational practice represents a proposed curriculum for a master of science degree program with an emphasis on cost engineering. The purpose of this document is to support post-graduate education in cost engineering, by providing the following:

• Guidance to faculty and students in the formulation of master’s degree programs that will concentrate on cost engineering, while maximizing the opportunity for cross-disciplinary coursework.
• A basis for course selection or self-study where no such degree program exists.

The curriculum for this course of study is based upon the content of The Total Cost Management (TCM) Framework, and AACE recommended practice 11R-88, Required Skills and Knowledge of Cost Engineering. It also references coursework that is typical in Construction, Project, and Engineering Management degree programs.

A master’s-level curriculum in cost engineering should specify prerequisite undergraduate courses, as identified in this EP. The institution may allow professional experience to serve as a substitute for formal coursework, or supplementary coursework to be undertaken concurrently with the master’s-level curriculum. This proposed curriculum provides course descriptions and outlines components of each subject.

The proposed curriculum focuses on cost engineering, and is in alignment with project Engineering, Procurement, Construction, and Management (EPCM), as well as Manufacturing and Information Technology. This recommended program of study offers a logical progression in formal education. Most bachelor’s degree and master’s degree Construction, Project, and Engineering programs offer, as a part of their scope a study, a brief overview of project controls. In many cases these programs are accredited in North America and internationally by the American Council for Construction Educators (ACCE).

The objective of this EP is to present to Universities that already offer higher education in Construction, Project, or Engineering Management a proposed degree program that is in line with industry and offers more extensive and deep coursework in project controls, cost engineering, and quantity surveying.

PROPOSED CURRICULUM

A. Undergraduate Prerequisite Subjects

• Engineering or Business Economics
• Financial or Project Accounting
• Business Writing
• Mathematics

Preferably, the incoming student will have an undergraduate degree in engineering, business, finance, or mathematics, with a minimum GPA of 3.0.
B. Cost Engineering Required / Core Courses
(8 courses / 24 credits from this list)

- Cost Estimating
- Planning and Scheduling
- Procurement and Contracting
- Project and Contract Administration
- Fundamentals of Project Management
- Project Controls Ethics
- Decision and Risk Analysis
- Performance Measurement and Data Analytics

C. Cost Engineering Elective Subjects
(3 courses / 9 credits from this list)

- Advanced Economic Analysis
- Appraisal and Valuation
- Communications in Technical Organizations
- Organizational Theory
- Contract and Commercial Law
- Project Finance
- Special Topics in Cost Engineering

D. General Electives

- Interdisciplinary subjects as approved by the University to support the degree program or dual degree
 - Engineering
 - Construction Management
 - Manufacturing
 - Real Estate
 - Project Management
 - Engineering Management
 - Information Systems
 - Law
 - Finance
 - Business

E. Capstone Project (3 credits)

- Thesis on a cost engineering subject
COURSE CONTENT

A. Undergraduate Prerequisite Subjects

Preferably, the incoming student will have an undergraduate degree in engineering, business, finance, or mathematics, with a minimum GPA of 3.0. An incoming candidate for a master's program who does not have college credit for any of these subjects should either add them to his/her total degree program or demonstrate proficiency in them to the satisfaction of the university. The institution may allow professional experience or certification to serve as a substitute for formal course work.

1. Engineering or Business Economics
 a. Fundamentals of economics, including:
 i. Micro- and macro- economics
 ii. Demand and supply
 iii. Price determination
 iv. Market structures
 v. Labor markets and wages

2. Financial or Project Accounting
 a. Basic financial accounting, including:
 i. Bookkeeping
 ii. Debit and credit
 iii. Depreciation
 iv. Ledgers
 v. Generally Accepted Accounting Principles
 vi. Cash and accrual basis
 vii. Financial reports

3. Business Writing
 a. Demonstrated competency in written communication gained through prior formal instruction or experience

4. Mathematics
 a. Demonstrated competency in mathematics, including:
 i. Analytical geometry
 ii. Algebra
 iii. Calculus
 iv. Basic probability and statistics
B. Cost Engineering Required Subjects.

Subjects in this category are intended to provide a basic background in business or project management and are considered essential for the professional cost engineer. 8 courses / 24 credits of the degree program will be devoted to pursuing these subjects.

1. Cost Estimating
 a. The equivalent of a 3-credit course built around construction or manufacturing cost estimating which provides an introduction to definitive estimating. It should include these subjects:
 i. Types of estimates, techniques, and accuracy
 ii. Cost data sources
 iii. Interpreting drawings and specifications
 iv. Labor costs
 v. Materials costs
 vi. Equipment costs
 vii. Overhead, indirect, and distributable costs
 viii. Basic contingency
 ix. Inflation/Escalation
 x. Cost indices
 xi. Profit
 xii. Introduction to cost estimating software
 xiii. Practical exercise in pricing a project or product
 xiv. Proposals
 xv. Contractual, managerial, and legal aspects of estimating and budgeting

2. Planning and Scheduling
 a. The equivalent of 3-credit course designed to provide basic proficiency in common scheduling techniques and theory. These subjects should be included:
 i. History of scheduling
 ii. Resource planning
 iii. Bar chart (Gantt) scheduling
 iv. CPM Scheduling
 v. Time-scaled networks
 vi. Linear Scheduling
 vii. Schedule baselines
 viii. Contractual, managerial, and legal aspects of scheduling
 ix. Schedule delay
 x. Introduction to Planning and Scheduling Software

3. Procurement and Contracting
 a. This is a detailed study of standard (AIA, AGC, U.S. Government, FIDIC etc.) and selected user-prepared contract forms. Topics include:
 i. Procurement strategies and delivery methods
 ii. Value for money analysis
 iii. Contract forms
 iv. Purchase orders
 v. Consulting contracts
 vi. Liabilities and risk allocation
 vii. General conditions
 viii. Special or supplementary conditions
 ix. General requirements
4. Project and Contract Administration
 a. This subject area provides an understanding of the administration of contracts and purchase orders. Topics include:
 i. Contractor and vendor qualification
 ii. Procurement strategies and delivery methods
 iii. Proposals
 iv. Bidding and evaluation
 v. Payment
 vi. Financial management
 vii. Change processing
 viii. Document control
 ix. Claims and disputes
 x. Contract closeout
 xi. Legal principles
 xii. Ethics principles

5. Fundamentals of Project Management
 a. This course provides a systematic look at project planning, by defining essential elements. Topics in this group apply the principles learned in earlier coursework. Topics include:
 i. Project stakeholders and interests
 ii. Organizational structures for project management
 iii. Insurance and bonding
 iv. Budget
 v. Work breakdown structures and charts of accounts
 vi. Project management plans
 vii. Project initiation
 viii. Subcontracting
 ix. Document control
 x. Change control
 xi. Contingency management
 xii. Project handover
 xiii. Historical data files
 xiv. Project closeout
 xv. Introduction to project management software

6. Project Controls Ethics
 a. This course introduces students to ethical methodologies, principles, values, and frameworks, then uses that foundation to study discipline- and field-specific codes of ethics within the profession. The course explores the ethical responsibilities of project management professionals to themselves, corporations, the government, and the public.
 i. Human nature
 ii. Ethics concepts
 iii. Codes of ethics
 iv. Compliance
 v. Interdependencies
vi. Intelligent disobedience
vii. Culture and values
viii. Integrity
ix. Legal concepts

7. Decision and Risk Analysis
 a. This course includes a review of the basic components of risk: the probability of an event and the consequences of the event. The core elements of probability theory are reviewed, and applied to the basic components of estimating and scheduling theory. Risk management is assessed from its basic steps: risk identification, risk impact analysis, risk response planning, risk monitoring and control, and recovery. Topics include:
 i. Probability
 ii. Descriptive statistics
 iii. Sampling theory
 iv. Hypothesis testing
 v. Decision theory
 vi. Correlation and regression
 vii. Types of risk
 viii. Risk tolerance
 ix. Risk modeling, using Monte Carlo simulation
 x. Risk management
 xi. Insurance
 xii. Risk transfer
 xiii. Introduction to risk modeling software

8. Performance Measurement and Data Analytics
 a. This course is designed to demonstrate and apply principles of economic analysis to a variety of business situations and case studies. Typical of included subjects are:
 i. Data collection and sampling
 ii. Audit techniques
 iii. Variance analysis
 iv. Earned value analysis
 v. Value engineering
 vi. Forecasting and trending
 vii. Project evaluation
 viii. Project monitoring
 ix. Key performance indicators
 x. Reporting, graphs, and charts

C. Cost Engineering Elective Subjects

Students will select a minimum of 3 courses / 9 credits from this group of subjects.

1. Advanced Economic Analysis
 a. This course is designed to demonstrate and apply principles of economic analysis and finance in a variety of business situations and case studies. Topics include:
 i. Life-cycle cost analysis
 ii. Time value of money
 iii. Evaluation of purchase, lease, and rental options
 iv. Profitability studies
 v. Cost-Benefit studies
vi. Budgeting and cash flow analysis
vii. Inflation/Escalation
viii. Time value of money
ix. Equivalence
x. Methods for comparison of economic alternatives
xi. Break-even analysis

2. Appraisal and Valuation
 a. This course aims to establish the economic context for the creation of value, introduce the principles for the assessment of value in property and product markets, develop a clear understanding of the valuation process and appropriately apply the principal valuation methods to a range of property / product types and interests. Topics include:
 i. Basic economics and structure of markets
 ii. Legal rights
 iii. Investment characteristics
 iv. Principles of valuation
 v. Ethical considerations
 vi. Price, value, and worth
 vii. Data sources

3. Communications in Technical Organizations
 a. This course teaches students essential communication skills utilized by successful managers in technical organizations, including subjects such as:
 i. Types of communication
 ii. Conveying a brand and culture
 iii. Audiences and stakeholders
 iv. Personality traits
 v. Presentations
 vi. Proposal writing
 vii. Meeting management
 viii. Social media
 ix. Cultural challenges

4. Organizational Theory
 a. This subject area deals with practical applications of the organization including management theories, organizational principles, and processes of organizational behavior. Topics include:
 i. Management concepts
 ii. Leadership/management styles
 iii. Personnel management
 iv. Organizational management
 v. Conflict management
 vi. The project office
 vii. Strategy and objectives
 viii. Global projects

5. Contract and Commercial Law
 a. This overview of the body of law is included to equip students with the skills to formulate and implement strategies and policies to minimize potential legal pitfalls. Topics include:
 i. General principles of tort and contract law
 ii. Contracts and terms
 iii. Contract negotiations
iv. Insurance and bonding
v. Liability / negligence
vi. Breach and damages
vii. Intellectual property rights
viii. Licensing and technology transfer
ix. Confidential and proprietary business information
x. Constructive changes
xi. Defective work
xii. Warranties
ixii. Termination
ixiv. Bankruptcies
ixv. Claims
ixvi. Alternative dispute procedures

6. Project Finance
a. This course teaches students to understand finance in the context of project organizations.
i. Funding sources
ii. Financial markets, stocks, and portfolios
iii. Entrepreneurial finance
iv. Corporate finance
v. Personal finance
vi. Corporate financial statements
vii. Organizational finance theory
viii. Debt and equity financing
ix. Crowdfunding

7. Special Topics in Cost Engineering
a. Universities normally have a “Special Topics” course category which enables a student to pursue one or more credits of study in a subject area agreed to between the student and the advisor. Those involving a cost engineering topic may be credited to the electives group.

D. Capstone Project (3 credits)

1. The Capstone Project is to be completed in the final term of the masters program, and provides an opportunity for students to apply what they have learned by producing a substantial piece of research under the tutelage of an industry advisor and program faculty. The project is expected to be aligned with students’ chosen areas of interest. The project product will be a thesis or graduate report on a cost engineering subject.

E. General Electives

1. Other elective courses may draw from those offered in Masters of Business Administration (MBA), Masters of Engineering Management, or Master of Science in Project Management degree programs, with an emphasis on project-related industry specifics and applications. Interdisciplinary subjects are acceptable as approved by the University to support the degree program or dual degree.
a. Engineering
b. Construction Management
c. Manufacturing
d. Real Estate
e. Project Management
f. Engineering Management
REFERENCES

CONTRIBUTORS

(EP 01E-14 January 29, 2018 Revision)
Dr. Sean T. Regan, FAACE, CCP, CEP, EVP (Author)
Dr. Alexia Nalewaik, FAACE, CCP (Author)

(EP 01E-14 April 26, 2014 Revision)
Dr. Sean T. Regan, FAACE, CCP, CEP (Author)

(RP 12R-89, June 1989 Revision)
AACE Education Board (Authors)
Donald F. McDonald Jr., CCP, Chair
James A. Bent, CCP
Neil N. Eldin
Frank J. Kelly Jr., CCP
James M. Neil, CCP
Joseph J. Orczyk, CCP