(PUBLIC REVIEW DRAFT) AACE[®] International Recommended Practice No. 127R-23

CHOOSING AMONG STRATEGIC ALTERNATIVES USING RISK ANALYSIS CONCEPTS IN DECISION MODELLING

TCM Framework: 3.3: Investment Decision Making 7.6 Risk Management

TABLE OF CONTENTS 1 2 3 Table of Contents1 4 5 6 2.1. Using Analysis to Examine Strategy Decisions from the Risk Point of View 7 3.1. Probabilistic Branching – Representing the Decision about Adopting a New Technology in the Schedule4 8 9 3.1.1. Structure of a Probabilistic Branch5 10 11 3.1.3. Simulation Results, Consequences for the Project7 12 3.1.4. Mechanics of the Simulation: How the Probabilistic Branch Works8 13 14 15 16 17 18 19 20 21 3.2.8. How the Conditional Branching Model Works14 22 23 24 25

27 **1. INTRODUCTION**

28

During the initiation phase for any significant project, strategic alternatives are being developed and one of the main considerations will include the balance of risk in any alternative. This recommended practice (RP) addresses analyzing risk in an alternative selection process simplified to highlight the important risks that make a difference about which project to do, (or which alternative to select) its configurations and whether to do a project at all. This recommended practice (RP) is associated with the TCM chapters 3.3 Investments Decision Making and 7.6, Risk Management. [1]

35

36 The purpose of this RP is to describe and discuss some of the risk analysis concepts that can be used when these 37 important alternative selection strategies are being developed by senior management of any project-oriented 38 organization. These important selections are made well before there is a project plan, schedule and cost estimate. 39 The RP proposes to develop models simplified to highlight the key risk characteristics of an alternative under 40 consideration and some concepts that are available currently to address them. These concepts bring an additional 41 level of clarity, transparency, traceability, repeatability and consistency with recommended practices of project risk 42 analysis. Simple models were developed to illustrate two of these methods, probabilistic branching and conditional 43 branching. One of the desired outcomes is to introduce these methods and their use to organizational senior 44 management and engage them in the use of risk analysis for strategic alternative selection.

45

46 This RP document is not intended to be a standard. Rather it is intended to provide a guideline for using project risk 47 analysis simulation capabilities of probabilistic and conditional branching to evaluate alternative selection within a 48 simplified model of the project's strategy. RPs are considered by most practitioners to be good practices that can be 49 relied on and that they would recommend be considered for use where applicable. The RP is most likely to be useful 50 to organizational leaders and decision makers, project management and risk team leaders.

51 52

53 2. RECOMMENDED PRACTICE

54

It is recommended that organizations faced with strategic decisions follow structured decision analysis (DA) frameworks and practices. The process steps of (1) Structuring, (2) Evaluation, (3) Agreement, and (4) Implementation are discussed in Section 3.3.1.1 of TCM. This RP especially fits into steps (1) and (2) and contributes to steps (3) and (4).

59

As an application example, an organization faces a strategic capital expansion decision: A large, complex plant for producing an important product must be built to fortify their market share. Two camps of executives are debating the new plant's configuration. Some see this as an opportune time to lead the industry by inserting a new technology. Other leaders believe that the new technology may be difficult to master, and that there is a strong risk that they cannot make it ready for this project in time to capture market share as required. They insist on at least having an alternative Plan B available to switch to the existing technology if the new technology becomes difficult and takes a long time to master.

67

Executives representing both points of view share a sense of urgency. They understand that their prime competitor is also building a production plant. If this team's project fails by being late to launch, the competitor can gain significant advantage as being first to market with the product. They also agree that the risk associated with deploying the new technology should be a significant factor in their making this strategic decision.

72

73 This RP recommends using risk analysis concepts in decision-making between the two described alternatives.

74 75

76 2.1. Using Analysis to Examine Strategy Decisions from the Risk Point of View

77

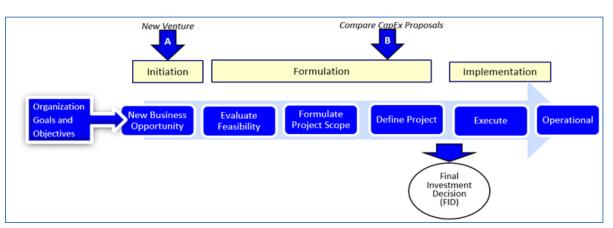
Integrated cost and schedule risk analyses (ICSRA) are usually conducted on a project with a well-defined plan, schedule estimate. The typical ICSRA is conducted to see how much contingency the schedule and budget need in order to provide the project owner with a degree of confidence of achieving success that is sufficient, based on the level of their desire for certainty of outcomes.

82

This RP examines using risk analysis concepts and techniques on the risk component of a strategic decision early in the process of structuring and managing the project. These strategic decisions may be more impactful for the project than risks that can occur during the execution phase after the project plan has been adopted. And yet the risk analyses usually focus downstream on the risk of executing the final plan.

87

88 This RP advances the risk analysis earlier in the decision-making process and higher-up the management ladder than 89 is usual. There is no defined project, so there is neither a plan nor an estimate to be examined for contingency 90 calculations and risk mitigation. Decisions about fundamental project aspects are yet to be made. It is proposed to 91 model the decision that has a strong component of risk to success as soon as the risk impact of alternative choices 92 can be discussed. This model will look like a project schedule because an important consequence of technology risk 93 is the amount of time it takes to resolve the risks to a satisfactory conclusion. Teams develop a time-phased network 94 risk modeling that includes logically driving interfaces, uncertainties, and risks. The typical schedule structure is 95 summarized in detail to focus on the risk aspect of the decision.


96

People involved in the strategic decision making for this analysis are different from the typical project management
team that carries out execution. They are in the organization's leadership positions with decision-making
responsibility. They decide on a project strategy that will guide key decisions to be made later and may be turned
into a detailed plan with a cost estimate.

101

102 The distinction between where risk analyses usually occur (B) and the focus of this RP (A) is shown in Figure 1.

103

104

105 106

Figure 1: Progress of a Project Decision with Risk Analyses at Initiation and Formulation

107 108

At initiation and during formulation stages important strategy and scoping decisions will be made. Many aspects of
 the alternatives are considered in making those decisions. Risk is one of those aspects described in this RP. The
 benefits of reviewing the technical readiness risk upstream of the project final investment decision include:

Highlighting risk aspects of decisions. Risk to a project is important but may not be controlling for the leadership. While there is a risk component in decision making, there is a concern that risk is talked about without applying methods of analysis that are available to project risk analysis professionals. This occurs

115	because the traditional Monte Carlo simulation (MCS) based methods are usually called on at the final
116	investment decision (FID) or later.
117	Leadership gains clarity. Risks are examined according to professional recommended practices. These
118	methods are known professionally, transparent in application and reproducible, showing results which are
119	directly connected to the risks. consistent with AACE first principles.[2]
120	Senior leadership participates in development. The risk model is validated, and assessment understood of
121	typical risk parameters; probability of occurring and impacts on activity durations and costs if they were to
122	occur, and mapping into the risk model's structure. This awareness may also lead to mitigation approaches
123	that change the pre-mitigated condition and therefore the consequences of residual risk that yet remain.
124	Leadership will then own the risk. Their decisions will benefit from a clear analysis of the shape of the risk
125	and its consequences. Their attention to risk analysis and management will be strengthened. Execution
126	teams can build on risk models initiated by leadership for continuity.
127	
128	The risk models shown in this RP strip away much of the detail of the typical project to shine the spotlight on the risk
129	aspect of leadership's discussions. While this RP focuses on one technological readiness risk, there may be several
130	key risks, and each can be modeled. Then, a consolidated risk model may be made to illustrate their interrelated
131	consequences to the project. For research relevant to this RP, see the Government Accountability Office (GAO)
132	Technology Readiness Assessment Guide [.]
133	
134	
135	3. TWO ALTERNATIVE APPROACHES TO ANALYZE CONSEQUENCES OF A LACK OF TECHNOLOGY READINESS
136	
137	Two standard risk methodologies are presented in this RP that can be used in simplified models to highlight the risk
138	aspect of a strategic decision. These methodologies are known to risk analysis practitioners but may not have been
139	extended to analyzing strategic up-stream decisions. They are probabilistic branching and conditional branching.
140	
141	Probabilistic branching examines the probability that a technology will not pass a key test.
142	 While passing the test is what is represented in the schedule, test failure is a possibility.
143	 Failure is represented by a simple probability of occurrence, with consequential activities of understanding
144	the causes of failure, planning fixing the technology, implementing the plan and to re-test the technology.
145	 With probabilistic branching the date of finishing with a desired level of confidence is the chosen result.
146	
147	Conditional branching models behavior of the project manager more flexibly.
148	• In Plan A, management decides the date, called the "trigger date," on which the new technology must be
149	adopted or rejected in favor of switching to Plan B:
150	 Plan B, an existing, less risky but adequate technology.
151	 Both of the alternative plans, A and B, are programmed in the model.
152	The initial examination of the new technology activity will be risky depending on its technological readiness.
153	• In simulation of the model, on every iteration the new technology may or may not achieve timely readiness.
154	• The model chooses Plan A or Plan B depending on whether the initial assessment of the new technology is
155	completed favorably and in a timely fashion.
156	• One result is to produce the completion date at some level of confidence, and another is to differentiate
157	between technologies used to achieve that result.
158	
159	
160	3.1. Probabilistic Branching – Representing the Decision about Adopting a New Technology in the Schedule
161	

In this simplified, risk-oriented model, the main risk is on the duration of the initial exploration of new technology, as shown in Figure 2:¹

164

Row						2022		2023	3			2024	ł		
ID	Activity ID	Description	Duration	Early Start	Early Finish	Apr Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct
1	Fail Test	Technology Development	450 d	05/01/22	07/24/23										
2	A0100	Start	0	05/01/22	05/01/22	🔻 Start									
3	A0150	Finish	0	07/24/23	07/24/23					•	Finish				
4	Fail Test.01	Baseline Plan	450 d	05/01/22	07/24/23										
5	A0110	Initial Exploration of New Technology	200 d	05/01/22	11/16/22	•	 /	Initial E	Explora	ation o	of New 1	[echno	logy		
6	A0115	Test: New Technology Ready to Continue	10 d	11/17/22	11/26/22		ľ	Test:	New T	echn	ology R	eady to	Contir	nue	
7	A0120	Finish Developing New Technology	200 d	11/27/22	06/14/23					r Fin	ish Dev	eloping	New	Techn	ology,
8	A0140	Conduct New Tech Acceptance Testing	40 d	06/15/23	07/24/23					1	Conduc	t New '	Tech A	Accept	ance i
9	Fail Test.02	Probabilistic Branch	0	11/27/22	11/26/22										
10	B0110	FAIL: Determine What Went Wrong	0	11/27/22	11/26/22		1	FAIL:	Deterr	mine \	√hat W	ent Wro	ong		
11	B0120	FAIL: Determine How to FIX the Problem	0	11/27/22	11/26/22			FAIL:	Deterr	mine H	How to F	-IX the	Proble	m	
12	B0130	FAIL: Implement The FIX	0	11/27/22	11/26/22			FAIL:	Impler	nent T	The FIX				
13	B0140	FAIL: Retest	0	11/27/22	11/26/22			FAIL:	Retes	t					

¹⁶⁵ 166 167

168

Figure 2: Probabilistic Branch Representing Possible Failure of the Initial Test of New Technology

Initial Exploration of the New Technology, Activity A0110, is a 200-day activity. It has been assessed to have a wide
 uncertainty 3-point estimate range of 200d, 300d and 600d. If the new technology passes the readiness test after
 initial exploration, then the baseline plan using the new technology for the project can be implemented straight away in the development and final acceptance testing.²

- 173 174
- 175 3.1.1. Structure of a Probabilistic Branch

176

But, if the new technology does not pass the test, A0115, there are four activities modeled in series that make up
the probabilistic branch. All four activities must occur in order to resume the baseline plan. They are: "Determine
What Went Wrong, Determine How to FIX the Problem, Implement the FIX, and Retest". These four activities, linked
with finish-to-start logic, are included in the schedule with durations of zero days, for they have durations only when
the probabilistic branch is active.

182

The two successor activities in the Baseline Plan group (A0120 and A0140) would have risks and uncertainties of their own that drive a distribution of A0140 finish dates. Since those risks apply to the cases whether the new technology fails or passes the test the first time, their probability and impact parameters are not detailed in a separate table. They should be specified with care to be realistic. These risks on baseline plan activities are represented as risk drivers with impacts on durations expressed as multiplicative factors since the activities to which they are applied have durations with remaining durations. When a risk driver occurs on an iteration, its relative

¹ The figures and calculations in this RP were produced with Safran Risk[™]. AACE International does not recommend any specific software package.

² The main risks were identified and assigned to the initial technology exploration, while the initial testing, continued technology development and acceptance testing also had risks applied. This is a simple model for illustration purposes. Practical limits to the number of branches exist. The practice of embedding branches within other higher-level branches is discouraged.

impact will be implemented by multiplying the schedule duration by values (factors or percentages) chosen from
 probability distributions of those factors.³

- 191 192 The probabilistic branch shown in Figure 2 succeeds the activity A0115 "Test New Technology Ready to Continue". 193 The probabilistic branch is activated upon test failure and leads to the activity ID B0110, "FAIL: Determine What 194 Went Wrong" and, in series, its three successors. All four of the activities in the probabilistic branch occur only if the 195 new technology fails the initial test. They are entered with zero durations so they have no impact on the baseline 196 plan unless the branch is activated.
- 197 198

200

199 3.1.2. Probabilistic Branch Risk Data

201 Risk data are collected in confidential interviews so the interviewees can speak candidly and provide information on 202 probability and impact without fear of personal repercussions from management or others. Interviewing this way 203 combats many biases that occur during risk workshops. One bias to be considered is that the preferred response is 204 always "Zero!" to the question: "How likely is this technology to have a serious failure at the initial test?" This answer 205 anchors other probability estimates, because the respondent knows a likely failure could seriously jeopardize the 206 project's approval and final outcome. This tendency, referred to as "anchoring and adjusting," has been known to 207 strongly influence some test teams. [4,5] For if they also design the test article, consequences of failure may be felt 208 personally. It is recommended that multiple qualified participants be invited to supply their independent opinions 209 about likelihood and the consequences of failure. At some point, the team needs to reassemble and discuss each 210 risk and its parameters, a validation exercise that will also be an opportunity for learning (not intimidating). Results are shown in Table 1. 211

212

The probabilistic branch activities have durations set by the risk analyst and project team leaders working with senior management. In this case the following ranges of durations were assumed to exist.⁴ The team needs to assemble and discuss each risk and the parameters, such as the likelihood of failing the test and the duration of the four summary activities in the probabilistic branch. These values were approved by leadership so they could experiment with the model and understand the challenges of failure in a virtual environment in advance of the actual project.

218

Duch chilictic Ducuch Activity	Low	Most Likely	High				
Probabilistic Branch Activity	(Days)						
FAIL: Risk Determine What Went Wrong	20	35	60				
FAIL: Risk on Determine how to FIX the Problem	25	50	90				
FAIL: Risk to Implement the FIX	50	70	120				
FAIL: Risk on Retest	10	20	40				

219 220

Table 1: Durations Assumed for the Probabilistic Branch Activities

- 221
- 222 These values would be validated by leadership and risk management professionals for their reasonableness before
- running the model.

³ See Recommended Practice 57R-09 "Integrated Cost-Schedule Risk Analysis using Risk Drivers and Monte Carlo Simulation of a CPM Schedule." (AACE International, Revised 2019)

⁴ The ranges are expressed in deterministic days rather than multiplicative factors. This is required since risk drivers' impacts cannot be applied against zero-days durations of the activities in the probable branch activities.

224

225

227

226 3.1.3. Simulation Results, Consequences for the Project

The likelihood of failing the initial test determines in how many iterations the probabilistic branch is activated. It represents the leaders' aggregate view of the new technology's readiness for this purpose. In this case there was a difference of opinion: Some leaders thought that the technology is not ready, and that it will fail the initial test in 90% of the iterations. Some leaders were much more optimistic and believed the technology will have a failure rate of only 10%.

233

Running the risk-focused decision model using these parameters produced the results shown in Table 2. These
 values indicate the difference in delay at the P-80 (80th percentile of success, 20 percent likely to overrun this date)
 level of confidence is more than 5 months longer if the failure rate is 90% rather than 10%.

237

Failure F	tate Assumptions	Finish Date @ P-80 level of confidence
FAIL at 1	0% Rate	May 24, 2024
FAIL at 9	0% Rate	October 21, 2024

238

Table 2: Schedule Result at P-80 Level of Confidence for Different Failure Rate Assumptions

240

241 Organizations have risk thresholds against which they make decisions. In this illustration, leaders elected to make

decisions based on a P-80 level of confidence. Their organization is willing to tolerate risks that drive outcomes in

243 less than the latest 20% of iterations, for those risks affect the cumulative distribution above the organization's P-80

cut-off. This is shown by the comparison of cumulative distribution curves in Figure 3.

246 247

248 Figure 3: Compare Cumulative Distributions for Different Likelihoods of Failing the Initial Test

249 250

252

251 3.1.4. Mechanics of the Simulation: How the Probabilistic Branch Works

Two figures below represent the new technology's failure or success of the initial test. They illustrate how the probabilistic branch implements these assumptions during Monte Carlo simulation. In Figure 4, while the iteration shown represents uncertainty of durations for baseline plan activities, it reflects success in the initial readiness test. The project followed the baseline plan without interruptions from the probabilistic branch in this iteration. This result is prominent in the 10% likelihood of failure scenario resulting in P-80 of 24 May 2024 as shown in Table 2.

Row						20	22		202	3			2024			
ID	Activity ID	Description	Duration	Early Start	Early Finish	n Ap	r Jul	Oct	Jan	Ap	r Jul	Oct	Jan	Apr	Jul	Oct
1	Fail Test	Technology Development	614 d	05/01/22	01/04/24											
2	A0100	Start	0	05/01/22	05/01/22	ł	Start									
3	A0150	Finish	0	01/04/24	01/04/24								🔻 Fin	ish		
4	Fail Test.01	Baseline Plan	614 d	05/01/22	01/04/24											
5	A0110	Initial Exploration of New Technology	292 d	05/01/22	02/16/23	1			1	Initia	l Explor	ation of	New T	echno	logy	
6	A0115	Test: New Technology Ready to Continue	12 d	02/17/23	02/28/23					Z Tes	t New '	lechno	logy Re	eady to	Conti	nue
7	A0120	Finish Developing New Technology	272 d	03/01/23	11/27/23					Ļ			Finish	Devel	oping	New T
8	A0140	Conduct New Tech Acceptance Testing	38 d	11/28/23	01/04/24								Cor	nduct I	New T	ech Ac
9	Fail Test.02	Probabilistic Branch	0													
10	B0110	FAIL: Determine What Went Wrong	0			1										
11	B0120	FAIL: Determine How to FIX the Problem	0			1										
12	B0130	FAIL: Implement The FIX	0			1										
13	B0140	FAIL: Retest	0		1	1										

259 260 261

Figure 4: Iteration in Which the Initial Testing of New Technology is Successful

262

Figure 5 shows an iteration in which the new technology failed the initial readiness test, and the project model executed the four activities of the probabilistic branch. Their durations are drawn, for this iteration, from the distributions of days added (Table 1 above). The probabilistic branch occurred in 90% of the iterations of the second case resulting in P-80 of 21 October 2024 shown in Table 2.

267

Row				E 1 0 .		2022 2023 2024 2025
	Activity ID Fail Test	Description Technology Development	Duration 984 d	Early Start 05/01/22	Early Finish 01/08/25	AprJun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr
2	A0100	Start	0	05/01/22	05/01/22	v Start
3	A0150	Finish	0	01/08/25	01/08/25	▼ Finish
4	Fail Test.01	Baseline Plan	984 d	05/01/22	01/08/25	
5	A0110	Initial Exploration of New Technology	547 d	05/01/22	10/29/23	Linitial Exploration of New Technology
6	A0115	Test: New Technology Ready to Continue	14 d	10/30/23	11/12/23	Test New Technology Ready to Continue
7	A0120	Finish Developing New Technology	200 d	05/14/24	11/29/24	K Finish Deve
8	A0140	Conduct New Tech Acceptance Testing	40 d	11/30/24	01/08/25	Conduct
9	Fail Test.02	Probabilistic Branch	183 d	11/13/23	05/13/24	
10	B0110	FAIL: Determine What Went Wrong	29 d	11/13/23	12/11/23	K FAIL: Determine What Went Wrong
11	B0120	FAIL: Determine How to FIX the Problem	50 d	12/12/23	01/30/24	FAIL: Determine How to FDC the Prot
12	B0130	FAIL: Implement The FIX	74 d	01/31/24	04/13/24	FAIL: Implement The FIX
13	B0140	FAIL: Retest	30 d	04/14/24	05/13/24	FAIL: Retest

268 269 270

271

Figure 5: Iteration in Which the New Technology Fails the Initial Test, Activating the Probabilistic Branch

272 The organization's executives need to be aware that completion of the project with the new technology depends on 273 its likelihood of passing the readiness test. Interpretation of results include discussions of the split between 274 successful test results and, perhaps, a range of likely test failures that display as bi-modal distributions. The 275 probability data and consequential activity duration ranges inserted by the probabilistic branch drive the results. 276 Leaders need to make decisions based in part on the results of this simulation. The strategic decision to adopt the 277 new technology should take the possibility of delayed completion into account. The probabilistic branch in the risk 278 model provides a computerized "test bed" for that purpose. A natural extension of evaluating results leads to 279 considering response methods. Notice that the organization's management team is now discussing risk and 280 evaluating it in deciding on alternatives.

282 283 **3.2. Conditional Branching – Representing the Risk: Timely Readiness of New Technology**

284

285 *3.2.1. Context*

286

287 Conditional branching strengthens Monte Carlo simulation models by representing realistic decision-making 288 behavior of project teams when faced with the likelihood that project duration will grow and delay completion. That 289 is, conditional branching allows the model to include the risk response tactic known as "contingency planning". 290 Achievement of a scheduled event (such as finishing the readiness test of a new technology) can determine whether 291 the project follows the original plan or diverts to an already specified alternative. Representing this decision makes 292 conditional branching somewhat more powerful than probabilistic branching as is described below.

293

The model simulates behavior expected if a project manager finds that the project is not going according to the original plan, (Plan A) and test an alternative (contingent) path to assuming a project team must continue with a plan the team assesses is likely to result in unacceptable overruns. When faced with this situation, project managers will proactively devise and change to a "recovery plan" (Plan B) sometimes called a "recovery schedule," that provides more resources in order to "claw back" the delays under Plan A. Conditional logic enables internal decision making to be reflected in the risk model based on unexpected results.

300

301 Compared with probabilistic branching, conditional branching adds more powerful and flexible dimensions. As 302 shown below, a trigger date may stipulate the date when the decision between Plan A and Plan B must be made, 303 perhaps to protect a contractual finish date. This date may be advanced or delayed by management reflecting the 304 project's competitive situation in the market. The conditional branch activities are activated when an internal 305 schedule event such as finishing the assessment of a new technology that is included in Plan A overruns its planned 306 completion date.⁵ This situation may occur, for example, if a scheduled event is driven by a combination of 307 uncertainty and risk embedded in the predecessor activity, "PLAN A: Initial Exploration of New Technology", and an 308 assessment of how long they can wait before they must adopt Plan B.

309

312

313

316 317

319

322

323

324 325

In this strategic case example, organizational leaders collaborated with the project executives to define a "drop
 dead" or "trigger" date for changing technology development paths *if* a readiness test was unsuccessful.

- After that date *if* the new technology was not ready for insertion in the project, *then_Plan B implementing* a standard technology would be implemented.
- But, *if* the new technology passed the readiness test, *then* the project could proceed with the new technology on the original Plan A.
- 318 3.2.2. Setting the Conditions for the Decision
- Figure 6 represents, in the contingency branching case, the conditions leading to the implementation of Plan B. This compares:
 - The risks reflected occurring on Activity A0110 PLAN A Initial Exploration of New Technology, and
 - Passing the Test: New Technology Ready to Continue (Activity A0115) by the target Date (appearing as activity TR01) that in this example is set at 26 November 2022.
- The organization's managers determine the trigger date, which may be the last day when it is feasible to abandon Plan A if it fails the test and to change to Activity CP0100 Plan B – Modify Existing Technology.

⁵ This RP illustrates a logical choice of branches based on one condition, that of exceeding a "trigger" date. Other conditions can be modelled using the scripting convention "if, else".

328

						2022 Mar			6	h.,	2023			1	6	k.	2024	h .
Row I	1	Description	Duration	Early Start	Early Finish	Mar	Мау	Jul	Sep	Nov	Jan	Mar	May	Jul	Sep	Nov	Jan	Mar
1	CondBr	Technology Development	450 d	01-May-22	24-Jul-23						i.						i.	
2	CondBr.0	Milestones	450 d	01-May-22	24-Jul-23						Ì						i i	
3	A0100	Start	0	01-May-22	01-May-22		Star				i						i i	
4	TR01	Target Date Finish New Tech Exploration	0	26-Nov-22	26-Nov-22				26-Nov-22	2	arget Dat	te Finish N	New Tech	Explorati	on			
5	A0140	Finish	0	24-Jul-23	24-Jul-23						ļ		24-Jul-2	3 🔺	Finish			
6	CondBr.1	Explore New Technology	210 d	01-May-22	26-Nov-22						-							
7	A0110	PLAN A - Initial exploration of New Technology	200 d	01-May-22	16-Nov-22		-			- 1PU	AN A - Init	ial explor	ation of N	ew Techr	nology		-	
8	A0115	Test: New Technology Ready to Continue	10 d	17-Nov-22	26-Nov-22					Ğт	est: New	Technolog	gy Ready t	o Contini	Je		-	
9	CondBr.2	Baseline (Plan A)	240 d	27-Nov-22	24-Jul-23						i						i i	
10	A0120	PLAN A - Finish Developing New Technology	200 d	27-Nov-22	14-Jun-23					t				PLAN A	- Finish De	veloping Ne	w Techn	ology
11	A0130	PLAN A - New Tech Acceptance Testing	40 d	15-Jun-23	24-Jul-23						1			ل	PLAN A - Ne	w Tech Acc	eptance	Testing
12	CondBr.3	Contingency (Plan B)	220 d	27-Nov-22	04-Jul-23													
13	CP0100	PLAN B - Modify Existing Technology	180 d	27-Nov-22	25-May-23					Ļ			P	LAN B - N	Aodify Exist	ing Technol	qgy	
14	CP0200	PLAN B - Existing Tech Acceptance Testing	40 d	26-May-23	04-Jul-23						-		Ľ	- PLA	N B - Existi	ng Tech Acc	i eptance	Testing

335

336 337

338

339

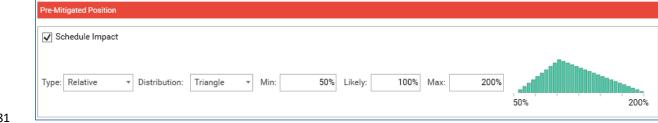
340

344

Figure 6: Baseline and Contingency Plans that Depend on the Duration of the Initial Exploration of New Technology

333 334

3.2.3. Considerations for a Conditional Branching Model


There are two types of results at play in the conditional branching model:

- When is the facility finished and ready for start-up?
- What technology, new or existing, will the plant be using when it starts-up?
- Having the project finished on time based on competition to be first-to-market, and the use of Plan B are related. If
 the delay using the preferred technical result of Plan A is too long, Plan B with the acceptable but less desirable
 technology may be called upon to protect the finish date.
- Conditional branching solves for both the finish date and the technology needed to get there to provide a complete
 picture of the resulting scenario for project management to evaluate. The objectives of first product to market and
 type of technology interact in this model.
- 348

Leadership needs to evaluate their reaction to the outcomes from the conditional branching model. The model's input assumptions about the uncertainty and risk of developing the new technology on schedule, compared to the value of the type of technology embedded in the new facility, depends on the company's utility for time and technology. Conditional branching provides the level of detail to support such decision making. Some assumptions of the schedule risk associated with the finish Activity A0100-Plan A Initial Exploration of New Technology compared to the Target Date chosen by management result in switching back to the older technology (Plan B) while other assumptions result in executing Plan A, the preferred but novel technology.

- 356
- The project team needs to decide if exploring the insertion and testing of a new technology is worthwhile at all if Plan B is a likely outcome as determined by the risks and the target date. Hence, conditional branching offers a
- richer menu of capabilities than does probabilistic branching. Using conditional branching enables the team to test
 sensitivity of delays in the project against the use of new technology.

361	
362 363 364	3.2.4. The Conditional Branching Model
365	Both Plan A (new technology) and Plan B (existing technology) are included in the schedule, but only one will be
366	chosen for each iteration in the Monte Carlo simulation. A decision event, shown as Activity TR01 "Target Date Finish
367	New Tech Exploration", is set by executives to be the latest date that they can wait for the testing of the new
368	technology to indicate a successful technology readiness. Factors in this decision might include pressures of market
369	competition, availability of financing, and concerns that the new technology is too immature to be included on this
370	project.
371	
372	
373	3.2.5. Modelling the Schedule Uncertainty of the Initial Exploration of New Technology
374	
375	Assume organizational executives were to ask, "How much schedule risk is associated with the initial exploration of
376	new technology?" That motivating question identifies the key "risk driver". The project champion may respond with
377	an optimistically ranged estimate: a minimum of 100 days (50% of the scheduled 200 days duration), most likely
378	200 days (as scheduled), and a maximum of 400 days (200% of 200 days). The probability distribution shown in
379	Figure 7 applies multipliers as percentages of the planned 200-day task:
380	

381

Figure 7: Optimistic Schedule Narrow Ranges Risk Assumption for Initial Exploration

383

Another decision maker, perhaps one more experienced at introducing new technology, is pessimistic and might
 propose a wider distribution. In that estimate, no opportunity exists to do better than the planned 200 days (100%
 of the scheduled 200 days), most likely is 300 days and the maximum duration is 600 days. That proposed range also
 applies relative impact ranges as percentages of the estimated duration, Figure 8:

✓ Schedule Impact								
Type: Relative	• Distribution:	Triangle	• Min:	100% Likely:	150% Ma	х: 300%	100%	11110000 300

389 390

391

Figure 8: Pessimistic Schedule Wide Ranges Risk Assumption for Initial Exploration

391

394

393 *3.2.6. Settling on the Trigger Date*

The results exhibit the power of conditional branch modelling. The schedule in this example was subjected to a Monte Carlo analysis of 10,000 iterations. In each iteration, the choice of Plan A or Plan B was determined by the finish date of "Target Date Finish New Tech Exploration" which in turn resulted from impacts of its risk driver (initial

exploration of new technology). The team initially agreed for testing purposes that Plan A, new technology, would
be pursued if the target finish date, March 4, 2023 were not exceeded, giving the technology exploration team a
little more than three months from the scheduled date of November 26, 2022. Or, if the target finish date were
exceeded, then choose Plan B Existing Technology. Whether the finish date occurred earlier or later than the trigger
date in the model depended on risk associated with the initial exploration activity in each iteration of the simulation.
The results of holding the trigger date constant at March 4, 2023 while exploring high-risk wide ranges and low-risk
narrow ranges are see in in Table 3.

405

Schedule Risk on Initial Exploration of New Technology	Latest Date to use Plan A	Schedule and Technology Choice Results						
Activity Risk	Constant Trigger Date	P-80 Date	Plan A New Tech	Plan B Existing Tech				
Low Risk: Narrow Ranges	04-Mar-23	02-Nov-23	83 %	17 %				
High Risk: Wide Ranges	04-Mar-23	06-Mar-24	24 %	76 %				

Table 3: Schedule and Technology Outcomes for Narrow and Wide Range Estimates and a Target Date March 4, 2023

408

With low risk represented by narrow ranges on the initial exploration task, the project's finish date at the P-80 level
of confidence (2 November 2023) was about 3.5 months later than planned (24 July 2023). That date resulted from
pursuing the preferred new technology (Plan A) in 83% of the iterations, a positive result from the imposition of
optimistic risks. The trigger date was exceeded in 17% of the iterations and selected the existing technology (Plan
B).

414

With high risk represented by wide risk ranges on the initial exploration task, different conclusions were found,
holding the trigger date at 4 March 2023. With those assumptions the project's P-80 finish date (6 March 2024) was
4 months later than with the narrower ranges, and Plan B occurred in 76% of the samples (Monte Carlo iterations),
and the preferred technology (Plan A) was chosen in only 24% of the iterations.

419

Consequently, if the senior leader was correct in assuming higher risk in the initial exploration of the new technology,
 the project finish date will be later *and* existing technology is likely to be implemented (given that choice of trigger
 date). The debate continued. The team learned from different perspectives and tested different scenarios.

423 424

425 3.2.7. Settling on a Medium Range of Risk for the Initial Exploration of New Technology

The risk model was tested for sensitivities to different risk of completing Activity A0110 PLAN A – Initial Exploration
of New Technology, represented by medium-to-wide risk impact ranges combined with the medium Trigger Date of
10 February 2023. Tests of narrower/wider ranges altered the dominance of path Plan A from 75% to 15%. The
team learned from experimentation how to understand the driving risks and to plan their responses (mitigations).
Examples are shown in Table 4.

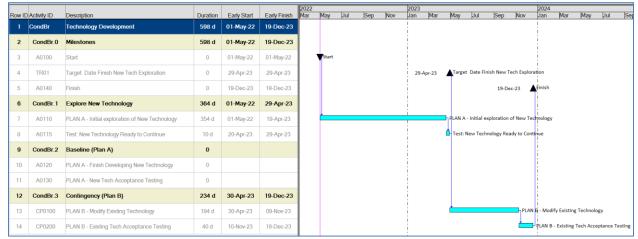
Medium Range Schedule Risk for Initial Exploration of New Technology										
Combinations of Impact and Trig	gger Date	Paths Likelihoods of Selection								
Test Scenario	Trigger Date	P-80 Project Finish Date	Plan A New Tech	Plan B Existing Tech						
Medium Range, Medium Date	10-Feb-23	26-Nov-23	50 %	50 %						
Narrow Range, Medium Date	10-Feb-23	24-Oct-23	75 %	25 %						
Wide Range, Medium Date	10-Feb-23	6-Mar-24	15 %	85 %						

Table 4: Results by Varying Combinations of Risk with a Medium Trigger date February 20, 2023

434

Notice that the combination of a medium trigger date and a medium range in this test resulted in a 50% - 50% likelihood of each technology path being selected. Varying the degree of risk on the initial exploration task and on the choice of a trigger date results in different P-80 finish dates and in the predominant technology outcome. It is apparent that management is now wrestling with both risk assessment and the consequences of the trigger date, key considerations in making strategic project decisions among alternatives, and learning about risk analysis methodologies in the process.

441


Management may conclude that only a 25% likelihood of ending up with the desired new technology under a
medium range of risk assumptions, given the earlier trigger date, might not justify exploring the new technology it
at all.

445

446447 3.2.8. How the Conditional Branching Model Works

448

With both Plan A and Plan B in the risk model's network logic, the conditional branch chooses one or the other based
on predefined conditions. The model instructs one branch to be "hidden" (activities durations take 0 days) and the
other branch to be active. *If* the trigger date is exceeded, *then* hide Plan A *and* activate Plan B, as shown in Figure
10. *Or if* the trigger date is not exceeded, *then* continue with Plan A *and* hide Plan B, as shown in Figure 11. Figures
10 and 11 illustrate snapshots of the model as it made choices between alternate paths.

455 456

Figure 10: Plan B is Chosen, Plan A is Hidden

457

	Activity ID CondBr	Description Technology Development		Early Start 01-May-22	Early Finish 23-Aug-23	2022					2023				2024			
			Duration 480 d			Mar	May	Jul	Sep	Nov	Jan	Mar	May	Jul	Sep	Nov	Jan	Mar
2	CondBr.0	Milestones	480 d	01-May-22	23-Aug-23													
3	A0100	Start	0	01-May-22	01-May-22		Start				-							
4	TR01	Target Date Finish New Tech Exploration	0	06-Dec-22	06-Dec-22				06-Dec	-22	Target D	ate Finish	New Tec	h Exploratio	on			
5	A0140	Finish	0	23-Aug-23	23-Aug-23						-		23-A	ug-23	Finish			
6	CondBr.1	Explore New Technology	220 d	01-May-22	06-Dec-22						-							
7	A0110	PLAN A - Initial exploration of New Technology	210 d	01-May-22	26-Nov-22		-			PL	AN A - In	itial explo	oration of	New Techn	nology		-	
8	A0115	Test: New Technology Ready to Continue	10 d	27-Nov-22	06-Dec-22					ġ.	Test: Nev	/ Technol	ogy Ready	to Continu	Je			
9	CondBr.2	Baseline (Plan A)	260 d	07-Dec-22	23-Aug-23						-							
10	A0120	PLAN A - Finish Developing New Technology	214 d	07-Dec-22	08-Jul-23					Ċ	+			PLAN	NA - Finis	h Developir	ng New To	echnolog
11	A0130	PLAN A - New Tech Acceptance Testing	46 d	09-Jul-23	23-Aug-23									t	PLAN A	A - New Tec	h Accepta	ance Test
12	CondBr.3	Contingency (Plan B)	0															
13	CP0100	PLAN B - Modify Existing Technology	0															
14	CP0200	PLAN B - Existing Tech Acceptance Testing	0								-						-	

458 459 460

461

4. CONCLUSION

462 463

Implementation of these modelling techniques is within a framework of decision analysis⁶. An important benefit of modelling decision alternatives focused on the consequences of risks is that senior leaders will better understand how the project plan is affected by risks. In these cases, it is of new technology adoption or not, but it could be the risk to location of a plant or entering a new industry. Credibility will increase as teams participate in developing the risk structure of the model and the discussions about risk parameters (probability, impact and mapping of risks to activities). Their augmented assortment of policy tools (such as those associated with the probability of a failure or deciding the trigger date for conditional branching to Plan B) enables organizational executives to evaluate

⁶ Other familiar figures of merit would typically be considered in conjunction with the practices described here. For example, if each alternative's model were cost loaded, then incremental, marginal, additional, and total contributions of each risk to return on investments (ROIs), impacts of probabilistic cash flows (PCFs), and schedule performance could be evaluated. (All are beyond the scope of this RP).

alternatives at a systems level. This experience will encourage ownership of the results, familiarity with the concepts
 of risk analysis and strengthen implementation of chosen alternatives.

473

Risk results will be an important element, although not the only element, of this approach to resolving the strategic
technology decision in a manner that is suitable to the organization. Through quantification and sensitivity testing
of different views during this decision modelling effort, the organizational executives will discover how projects'
mutual objectives of using the *desired technology* and achieving *timely completion* are related given the risks and
uncertainty that are deemed to exist⁷.

479

480 Senior leaders will be very satisfied in the development and implementation of a decision assessment model of 481 strategic policies and an analysis of alternatives (AOA) in collaboration to reach a joint decision of parameters based 482 on focused discussions. The repeatability and transparency of the methods add to the credibility of the results. This 483 sophisticated modelling is neither difficult nor unknown. It can be applied using commercially available software 484 systems. Once leadership is familiar and confident with this methodology, an independent risk assessment team 485 might be commissioned to make an unbiased estimate of the risk. Then, if the leaders cannot settle on a single assessment of the new technology exploration and results are quite different depending on whom to believe, the 486 organization's executives will be talking seriously about quantified models of uncertainty and risk as important 487 488 contributors to their decisions.

489 490

491 **REFERENCES**

492

- [1] H. L. Stephenson, Ed., Total Cost Management Framework: An Integrated Approach to Portfolio, Program and Project Management, 2nd ed., Morgantown, WV: AACE International, Latest revision.
- [2] AACE International, Recommended Practice No. 40R-08, Contingency Estimating--- General Principles, Morgantown, WV, AACE International, Lagest revision.
- [3] AACE International, Recommended Practice No. 57R-09, "Integrated Cost-Schedule Risk Analysis using Risk Drivers and Monte Carlo Simulation of a CPM Schedule." Morgantown, WV, AACE International, Latest revision.
- 493 [4] AACE International Recommended Practice No. 71R-12, "Required Skills and Knowledge of Decision and Risk
- 494 Management," Morgantown, WV: AACE International, Latest Revision
- 495 [5] Tversky, Amos and Kahneman, Daniel, "Judgment under Uncertainty: Heuristics and Biases," Science, New Series,
- 496 Vol. 185, No. 4157. (Sep. 27, 1974), pp. 1124-1131
- 497 [6] Technology Readiness Assessment Guide, Best Practices for Evaluating the Readiness of Technology for Use in
- 498 Acquisition Programs and Projects, GAO-20-48G, January 2020.
- 499 [7] Total Cost Management (TCM) Framework, Section 3.3.1.1 Decision Analysis, AACE International second Edition500
- 501

502 CONTRIBUTORS

- 504 Disclaimer: The content provided by the contributors to this recommended practice is their own and does not 505 necessarily reflect that of their employers, unless otherwise stated.
- 506
- 507 Dr. David T. Hulett, FAACE (Primary Contributor)
- 508 Keith D. Hornbacher (Primary Contributor)
- 509 Francisco Cruz Moreno, PE CCP

⁷ Usually, the decision analysis is conducted on risks that have been subjected to analysis and mitigation. The post-mitigation results indicate residual risk that is impractical to further resolve.

510 Dr. Dan Melamed, CCP EVP FAACE

511 Abbas Shakourifar, PSP